Примеры ферментов и их функции

Как опубликовать статью на нашем сайте? Ферменты — это особый вид протеинов, которым природой отведена роль катализаторов разных химических процессов. Этот термин постоянно на слуху, правда, далеко не все понимают, что такое фермент или энзим, какие функции выполняет это вещество, а также чем отличаются ферменты от энзимов и отличаются ли вообще. Все это сейчас и узнаем.

Дорогие читатели! Наши статьи рассказывают о типовых способах решения проблем со здоровьем, но каждый случай носит уникальный характер.

Если вы хотите узнать, как решить именно Вашу проблему - начните с программы похудания. Это быстро, недорого и очень эффективно!


Узнать детали

О пищеварительных ферментах, их видах и функциях

В клетке любого живого организма протекают миллионы химических реакций. Каждая из них имеет большое значение, поэтому важно поддерживать скорость биологических процессов на высоком уровне. Почти каждая реакция катализируется своим ферментом.

Что такое ферменты? Какова их роль в клетке? Термин "фермент" происходит от латинского fermentum — закваска. Также они могут называться энзимами от греческого en zyme — "в дрожжах".

Ферменты — биологически активные вещества, поэтому любая реакция, протекающая в клетке, не обходится без их участия. Эти вещества выполняют роль катализаторов. Соответственно, любой фермент обладает двумя основными свойствами:.

Ферменты ускоряют биохимические реакции в тысячу, а в некоторых случаях в миллион раз. Это значит, что при отсутствии ферментативного аппарата все внутриклеточные процессы практически остановятся, а сама клетка погибнет.

Поэтому роль ферментов как биологически активных веществ велика. Разнообразие энзимов позволяет разносторонне регулировать метаболизм клетки. В любом каскаде реакций принимает участие множество ферментов различных классов. Биологические катализаторы обладают большой избирательностью благодаря определенной конформации молекулы. Объясняется это опять же специфичностью молекулы. Главная задача фермента — ускорение соответствующей реакции.

Любой каскад процессов, начиная с разложения пероксида водорода и заканчивая гликолизом, требует присутствия биологического катализатора. Правильная работа ферментов достигается высокой специфичностью к определенному субстрату. Это значит, что катализатор может ускорять только определенную реакцию и никакую больше, даже очень похожую. По степени специфичности выделяют следующие группы энзимов:.

Например, коллагеназа расщепляет коллаген, а мальтаза расщепляет мальтозу. Сюда входят такие вещества, которые могут катализировать определенный класс реакций, к примеру, гидролитическое расщепление. Работа биокатализатора начинается с момента присоединения его активного центра к субстрату. При этом говорят о комплементарном взаимодействии наподобие замка и ключа. Здесь имеется в виду полное совпадение формы активного центра с субстратом, что дает возможность ускорять реакцию.

Следующий этап заключается в протекании самой реакции. Ее скорость возрастает благодаря действию ферментативного комплекса.

В конечном итоге мы получаем энзим, который связан с продуктами реакции. Заключительный этап — отсоединение продуктов реакции от фермента, после чего активный центр вновь становится свободным для очередной работы. В организме человека можно найти огромное количество ферментов. Все знания об их функциях и работе были систематизированы, и в итоге появилась единая классификация, благодаря которой можно легко определить, для чего предназначен тот или иной катализатор.

Здесь представлены 6 основных классов энзимов, а также примеры некоторых подгрупп. Ферменты этого класса катализируют окислительно-восстановительные реакции. Всего выделяют 17 подгрупп. Оксидоредуктазы обычно имеют небелковую часть, представленную витамином или гемом. Биохимия ферментов-дегидрогеназ заключается в отщеплении атомов водорода и переносе их на другой субстрат.

Эта подгруппа чаще всего встречается в реакциях дыхания, фотосинтеза. Нередко встречаются ионы металлов. Примерами могут служить такие энзимы, как цитохромредуктазы, пируватдегидрогеназа, изоцитратдегидрогеназа, а также многие ферменты печени лактатдегидрогеназа, глутаматдегидрогеназа и т. Ряд ферментов катализирует присоединение кислорода к водороду, в результате чего продуктами реакции могут быть вода или пероксид водорода H 2 0, H 2 0 2.

Примеры ферментов: цитохромоксидаза, тирозиназа. Эти биокатализаторы ускоряют присоединение кислорода к субстрату. Дофамингидроксилаза — один из примеров таких энзимов. Задача ферментов этой группы состоит в переносе радикалов от вещества-донора к веществу-реципиенту. Метилирование нуклеотидов играет большую роль в регуляции работы нуклеиновой кислоты.

Энзимы этой подгруппы транспортируют ацильную группу с одной молекулы на другую. Примеры ацилтрансфераз: лецитинхолестеринацилтрансфераза переносит функциональную группу с жирной кислоты на холестерин , лизофосфатидилхолинацилтрансфераза ацильная группа переносится на лизофосфатидилхолин.

Примеры ферментов: аланинаминотрансфераза, которая катализирует синтез аланина из пирувата и глутамата путем переноса аминогруппы. Ферменты этой подгруппы катализируют присоединение фосфатной группы. Другое название фосфотрансфераз, киназы, встречается намного чаще. Примерами могут служить такие энзимы, как гексокиназы и аспартаткиназы, которые присоединяют фосфорные остатки к гексозам чаще всего к глюкозе и к аспарагиновой кислоте соответственно. Гидролазы — класс энзимов, которые катализируют расщепление связей в молекуле с последующим присоединением воды.

Вещества, которые относятся к этой группе, - основные ферменты пищеварения. Биохимия ферментов этого ряда заключается в разрушении гликозидных связей полимеров полисахаридов и олигосахаридов. Примеры: амилаза, сахараза, мальтаза. К пептидазам относятся такие ферменты, как пепсины, трипсин, химотрипсин, карбоиксипептидаза. Примеры: аргиназа, уреаза, глутаминаза и т. Многие ферменты-амидазы встречаются в орнитиновом цикле. Лиазы — ферменты, по функции схожие с гидролазами, однако при расщеплении связей в молекулах не затрачивается вода.

Энзимы этого класса всегда имеют в составе небелковую часть, например, в виде витаминов В1 или В6. Эти ферменты действуют на С-С связь. Примерами могут служить глутаматдекарбоксилаза или пируватдекарбоксилаза. Такие ферменты, как правило, отщепляют фосфатную группу от вещества-субстрата.

Пример: аденилатциклаза. Способности каждого энзима определяются индивидуальным, только ему свойственным строением. Любой фермент — это, прежде всего, белок, и его структура и степень сворачивания играют решающую роль в определении его функции. Для каждого биокатализатора характерно наличие активного центра, который, в свою очередь, делится на несколько самостоятельных функциональных областей:. В зависимости от конформации белковой молекулы каталитический центр может принимать разнообразную форму, которая должна соответствовать субстрату так же, как замок ключу.

Такая сложная структура объясняет то, что ферментативный белок находится в третичном или четвертичном состоянии. Здесь в первую очередь происходит связь между молекулой фермента и молекулой-субстратом.

Однако связи, которые образует адсорбционный центр, очень слабые, а значит, каталитическая реакция на этом этапе обратима. Их функция — регулирование работы энзима. Регулирование происходит с помощью молекул-ингибиторов и молекул-активаторов. Активаторные белки, связываясь с молекулой фермента, ускоряют его работу. Ингибиторы же, напротив, затормаживают каталитическую активность, причем это может происходить двумя способами: либо молекула связывается с аллостерическим центром в области активного центра фермента конкурентное ингибирование , либо она присоединяется к другой области белка неконкурентное ингибирование.

Конкурентное ингибирование считается более действенным. Ведь при этом закрывается место для связывания субстрата с ферментом, причем этот процесс возможен только в случае практически полного совпадения формы молекулы ингибитора и активного центра. Энзим зачастую состоит не только из аминокислот, но и из других органических и неорганических веществ.

Соответственно, выделяют апофермент — белковую часть, кофермент — органическую часть, и кофактор — неорганическую часть. Кофермент может быть представлен улгеводами, жирами, нуклеиновыми кислотами, витаминами.

В свою очередь, кофактор — это чаще всего вспомогательные ионы металлов. Активность ферментов определяется его строением: дополнительные вещества, входящие в состав, меняют каталитические свойства.

Разнообразные виды ферментов — это результат комбинирования всех перечисленных факторов образования комплекса. Энзимы как биологически активные вещества не всегда необходимы организму.

Биохимия ферментов такова, что они могут в случае чрезмерного катализа навредить живой клетке. Для предотвращения пагубного влияния энзимов на организм необходимо каким-то образом регулировать их работу. Процесс денатурации обратим, однако он может существенно повлиять на работу веществ. Наибольшая активность ферментов, как правило, наблюдается при нейтральных значениях pH 7,,2.

Также есть энзимы, которые работают только в кислой среде или только в щелочной. Так, в клеточных лизосомах поддерживается низкий pH, при котором активность гидролитических ферментов максимальна.

В случае их случайного попадания в цитоплазму, где среда уже ближе к нейтральной, их активность снизится. Стоит упомянуть о значении кофермента и кофактора в составе ферментов. Наличие витаминов или ионов металла существенно влияет на функционирование некоторых специфических энзимов.

Все ферменты организма принято называть в зависимости от их принадлежности к какому-либо из классов, а также по субстрату, с которым они вступают в реакцию. Иногда по систематической номенклатуре используют в названии не один, а два субстрата. Сохранились и тривиальные названия, которые не придерживаются правил номенклатуры. Примерами являются пищеварительные ферменты: трипсин, химотрипсин, пепсин.

В природе существуют особые вещества белковой природы, одинаково успешно функционирующие как в живой клетке, так и за её пределами. Это ферменты.

Ферменты – биологические катализаторы. Значение ферментов

Глава IV. Эти превращения включают все известные виды химических реакций: межмолекулярный перенос функциональных групп, гидролитическое и негидролитическое расщепления химических связей, внутримолекулярная перестройка, новообразование химических связей и окислительно - восстановительные реакции.

Такие реакции протекают в организме с чрезвычайно большой скоростью только в присутствии катализаторов. Все биологические катализаторы представляют собой вещества белковой природы и носят названия ферменты далее Ф или энзимы Е.

Ферменты не являются компонентами реакций, а лишь ускоряют достижение равновесия увеличивая скорость как прямого, так и обратного превращения.

Ускорение реакции происходит за счет снижении энергии активации — того энергетического барьера, который отделяет одно состояние системы исходное химическое соединение от другого продукт реакции.

Ферменты ускоряют самые различные реакции в организме. Так достаточно простая с точки зрения традиционной химии реакция отщепления воды от угольной кислоты с образованием СО 2 требует участия фермента, так как без него она протекает слишком медленно для регулирования рН крови. Благодаря каталитическому действию ферментов в организме становится возможным протекание таких реакций, которые без катализатора шли бы в сотни и тысячи раз медленнее. Влияние на скорость химической реакции: ферменты увеличивают скорость химической реакции, но сами при этом не расходуются.

Скорость реакции — это изменение концентрации компонентов реакции в единицу времени. Если она идет в прямом направлении, то пропорциональна концентрации реагирующих веществ, если в обратном — то пропорциональна концентрации продуктов реакции. Отношение скоростей прямой и обратной реакций называется константой равновесия.

Ферменты не могут изменять величины константы равновесия, но состояние равновесия в присутствии ферментов наступает быстрее. Специфичность действия ферментов. В клетках организма протекает тыс. Специфичность действия фермента — это способность ускорять протекание одной определенной реакции, не влияя на скорость остальных, даже очень похожих. Абсолютную — когда Ф катализирует только одну определенную реакцию аргиназа — расщепление аргинина.

Относительную групповую спец — Ф катализирует определенный класс реакций напр. Вещество, химическое превращение которого катализируется ферментом носит название субстрат S. Активность ферментов — способность в разной степени ускорять скорость реакции. Активность выражают в:.

Активность зависит в первую очередь от температуры. Наибольшую активность тот или иной фермент проявляет при оптимальной температуре. При понижении температуры, замедляется броуновское движение, уменьшается скорость диффузии и, следовательно, замедляется процесс образования комплекса между ферментом и компонентами реакции субстратами. При этом скорость химической реакции заметно падает рис. Для большинства из них существует определенное оптимальное значение рН, при котором их активность максимальна.

Поскольку в клетке содержатся сотни ферментов и для каждого из них существуют свои пределы опт рН, то изменение рН это один из важных факторов регуляции ферментативной активности.

Так, в результате одной химреакции при участии определенного фермента рН опт которого лежит в перделах 7. При этом значение рН смещается в область 5,5 — 6. Еще пример про пепсин и трипсин.

Химическая природа ферментов. Строение фермента. Активный и аллостерический центры. Все ферменты это белки с молекулярной массой от 15 до нескольких млн Да. По химическому строению различают простые ферменты состоят только из АК и сложные ферменты имеют небелковую часть или простетическую группу. Белковая часть носит название — апофермент, а небелковая, если она связана ковалентно с апоферментом, то называется кофермент, а если связь нековалентная ионная, водородная — кофактор.

Функции простетической группы следующие: участие в акте катализа, осуществление контакта между ферментом и субстратом, стабилизация молекулы фермента в пространстве. Коферменты можно рассматривать как составную часть молекулы фермента. В процессе катализа реакции в контакт с субстратом вступает не вся молекула фермента, а определенный ее участок, который называется активным центром.

Эта зона молекулы не состоит из последовательности аминокислот, а формируется при скручивании белковой молекулы в третичную структуру. Отдельные участки аминокислот сближаются между собой, образуя определенную конфигурацию активного центра. Важная особенность строения активного центра - его поверхность комплементарна поверхности субстрата, то есть остатки АК этой зоны фермента способны вступать в химическое взаимодействие с определенными группами субстрата.

Можно представить, что активный центр фермента совпадает со структурой субстрата как ключ и замок. В активном центре различают две зоны: центр связывания , ответственный за присоединение субстрата, и каталитический центр , отвечающий за химическое превращение субстрата. Сложные ферменты в каталитическом центре имеют кофактор или кофермент. Помимо активного центра ряд ферментов снабжен регуляторным аллостерическим центром. С этой зоной фермента взаимодействуют вещества, влияющие на его каталитическую активность.

Акт катализа складывается из трех последовательных этапов. Образование фермент-субстратного комплекса при взаимодействии через активный центр. Связывание субстрата происходит в нескольких точках активного центра, что приводит к изменению структуры субстрата, его деформации за счет изменения энергии связей в молекуле.

Это вторая стадия и называется она активацией субстрата. При этом происходит определенная химическая модификация субстрата и превращение его в новый продукт или продукты. В результате такого превращения новое вещество продукт утрачивает способность удерживаться в активном центре фермента и фермент-субстратный, вернее уже фермент-продуктный комплекс диссоциирует распадается. Виды каталитических реакций:. Ферментативные эффекторы - вещества, изменяющие скорость ферментативного катализа и регулирующие за счет этого метаболизм.

Среди них различают ингибиторы - замедляющие скорость реакции и активаторы - ускоряющие ферментативную реакцию. В зависимости от механизма торможения реакции различают конкурентные и неконкурентные ингибиторы. Строение молекулы конкурентного ингибитора сходно со структурой субстрата и совпадает с поверхностью активного центра как ключ с замком или почти совпадает. Степень этого сходства может даже быть выше чем с субстратом. Концентрация способного к катализу фермента при этом снижается и скорость образование продуктов реакции резко падает рис.

В качестве конкурентных ингибиторов выступает большое число химических веществ эндогенного и экзогенного происхождения то есть образующихся в организме и поступающих извне — ксенобиотики, соответственно. Эндогенные вещества являются регуляторами метаболизма и называются антиметаболитами. Многие из них используют при лечении онкологических и микробных заболеваний, тк. Но при избытке субстрата и малой концентрации конкурентного ингибитора его действие отменяется. Второй вид ингибиторов - неконкурентные.

Они взаимодействую с ферментом вне активного центра и избыток субстрата не влияет на их ингибирующую способность, как в случае с конкурентными ингибиторами. Эти ингибиторы взаимодействуют или с определенными группами фермента тяжелые металлы связываются с тиоловыми группами Цис или чаще всего регуляторным центром, что снижает связывающую способность активного центра. Собственно процесс ингибирования - это полное или частичное подавление активности фермента при сохранении его первичной и пространственной структуры.

Различают также обратимое и необратимое ингибирование. Необратимые ингибиторы инактивируют фермент, образуя с его АК или другими компонентами структуры химическую связь. Обычно это ковалентная связь с одним из участков активного центра. Такой комплекс практически недиссоциирует в физиологических условиях. В другом случае ингибитор нарушает конформационную структуру молекулы фермента - вызывает его денатурацию.

Действие обратимых ингибиторов может быть снято при переизбытке субстрата или под действием веществ, изменяющих химическую структуру ингибитора. Конкурентные и неконкурентные ингибиторы относятся в большинстве случаев к обратимым.

Помимо ингибиторов известны еще активаторы ферментативного катализа. Ферменты, участвующие в синтезе белков, нуклеиновых кислот и ферменты энергетического обмена присутствуют во всех клетках организма. Но клетки, которые выполняют специальные функции содержат и специальные ферменты. Так клетки островков Лангерганса в поджелудочной железе содержат ферменты, катализирующие синтез гормонов инсулина и глюкагона. Ферменты, свойственные только клеткам определенных органов называют органоспецифическими: аргиназа и урокиназа - печень, кислая фосфатаза - простата.

По изменению концентрации таких ферментов в крови судят о наличии патологий в данных органах. В клетке отдельные ферменты распределены по всей цитоплазме, другие встроены в мембраны митохондрий и эндоплазматического ретикулума, такие ферменты образуют компартменты, в которых происходят определенные, тесно связанные между собой этапы метаболизма.

Многие ферменты образуются в клетках и секретируются в анатомические полости в неактивном состоянии - это проферменты. Часто в виде проферментов образуются протеолитические ферменты расщепляющие белки. Затем под воздействием рН или других ферментов и субстратов происходит их химическая модификация и активный центр становится доступным для субстратов.

Существуют также изоферменты - ферменты, отличающиеся по молекулярной структуре, но выполняющие одинаковую функцию. Название фермента формируется из следующих частей:. В настоящее время принята международная классификация ферментов, в основу которой положен тип катализируемой реакции. Выделяют 6 классов, которые в свою очередь делятся на ряд подклассов в данной книге представлены только выборочно :.

Катализируют окислительно-восстановительные реакции. Делятся на 17 подклассов. Все ферменты содержат небелковую часть в виде гема или производных витаминов В 2 , В 5. Субстрат, подвергающийся окислению выступает как донор водорода. Дегидрогеназы отщепляют от одного субстрата водород и переносят на другие субстраты. Оксидазы - катализирует перенос водорода на кислород с образованием воды или Н 2 О 2.

Цитохромокисдаза дыхательной цепи. Монооксидазы - цитохром Р По своему строению одновременно гемо- и флавопротеид.

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Ферменты – биологические катализаторы. Значение ферментов. Видеоурок по биологии 10 класс

Биохимия ферментов. Строение, свойства и функции

Как опубликовать статью на нашем сайте? Ферменты — это особый вид протеинов, которым природой отведена роль катализаторов разных химических процессов.

Этот термин постоянно на слуху, правда, далеко не все понимают, что такое фермент или энзим, какие функции выполняет это вещество, а также чем отличаются ферменты от энзимов и отличаются ли вообще.

Все это сейчас и узнаем. Без этих веществ ни люди, ни животные не смогли бы переваривать пищу. И это только один из примеров работы энзима в качестве катализатора, ускоряющего биологические процессы. Сегодня ферменты незаменимы в промышленности, они важны для производства сахара , маргаринов , йогуртов , пива , кожи, текстиля, спирта и даже бетона.

В моющих средствах и стиральных порошках также присутствуют эти полезные вещества — помогают выводить пятна при низких температурах. В свое время он весьма заинтересовался спиртовым брожением и в ходе исследования нашел неизвестное вещество, ускоряющее этот процесс. Затем, почти тремя веками позже, француз Луи Пастер, также наблюдая за процессами брожения, пришел к выводу, что ферменты — не что иное, как вещества живой клетки. А через некоторое время немец Эдуард Бухнер добыл фермент из дрожжей и определил, что это вещество не является живым организмом.

Еще несколькими годами позже другой немец Вилли Кюне предложил все белковые катализаторы разделить на две группы: ферменты и энзимы. И лишь год положил конец всем научным спорам: оба термины энзим и фермент решено использовать как абсолютные синонимы.

Все ферменты являются белками, но не все белки — ферменты. Как и другие протеины, энзимы состоят из аминокислот. И что интересно, на создание каждого фермента уходит от ста до миллиона аминокислот, нанизанных, словно жемчуг на нить.

Но эта нить не бывает ровной — обычно изогнута в сотни раз. Таким образом, создается трехмерная уникальная для каждого фермента структура. Меж тем, молекула энзима — сравнительно крупное образование, и лишь небольшая часть его структуры, так называемый активный центр, участвует в биохимических реакциях. Каждая аминокислота соединена с другой определенным типом химической связи, а каждый фермент имеет свою уникальную последовательность аминокислот.

Для создания большинства из них используются примерно по 20 видов. Хотя при участии ферментов в природе происходит огромное количество реакций, но все они могут быть разделены на 6 категорий. Соответственно, каждая из этих шести реакций протекает под влиянием определенного типа ферментов. Ферменты, участвующие в этих реакциях, называются оксидоредуктазами. В качестве примера можно вспомнить как, алкогольдегидрогеназы преобразуют первичные спирты в альдегид.

Ферменты, благодаря которым происходят эти реакции, называются трансферазами. Они обладают умением перемещать функциональные группы от одной молекулы к другой. Так происходит, например, когда аланинаминотрансферазы перемещают альфа-аминогруппы между аланином и аспартатом. Также трансферазы перемещают фосфатные группы между АТФ и другими соединениями, а из остатков глюкозы создают дисахариды. Гидролазы, участвующие в реакции, умеют разрывать одинарные связи, добавляя элементы воды.

Во многих химических реакциях положение функциональной группы изменяется в пределах молекулы, но сама молекула состоит из того же количества и типов атомов, что были до начала реакции. Иными словами, субстрат и продукт реакции являются изомерами.

Такого типа трансформации возможны под влиянием ферментов изомеразы. Гидролазы разрушают связь, добавляя в молекулу элементы воды. Лиазы осуществляют обратную реакцию, удаляя водную часть из функциональных групп. Таким образом, создают простую связь. Ферменты ускоряют практически все химические реакции, происходящие в клетках. Они имеют жизненно важное значение для человека, облегчают пищеварение и ускоряют метаболизм.

Другие наоборот связывают мелкие молекулы. Но ферменты, говоря научным языком, обладают высокой селективностью. Это значит, что каждое из этих веществ способно ускорять только определенную реакцию. Субстраты в свою очередь создают связь с частью фермента, именуемой активным центром. Существуют два принципа, объясняющие специфику взаимодействия ферментов и субстратов. Согласно другой модели, оба участника реакции, активный центр и субстрат, меняют свои формы, чтобы соединиться. По какому бы принципу ни происходило взаимодействие результат всегда одинаковый — реакция под воздействием энзима протекает во много раз быстрее.

А вещество-катализатор продолжает выполнять свою работу, но уже при участии других частиц. Бывают случаи, когда энзимы выполняют свои функции с неправильной интенсивностью. Чрезмерная активность вызывает чрезмерное формирование продукта реакции и дефицит субстрата.

В результате — ухудшение самочувствия и серьезные болезни. Причиной гиперактивности энзима может быть как генетическое нарушение, так и избыток витаминов или микроэлементов , используемых в реакции. Гипоактивность ферментов может даже стать причиной смерти, когда, например, энзимы не выводят из организма токсины либо возникает дефицит АТФ.

Причиной такого состояния также могут быть мутированные гены или, наоборот, гиповитаминоз и дефицит других питательных веществ. Кроме того, пониженная температура тела аналогично замедляет функционирование энзимов.

Сегодня можно часто услышать о пользе ферментов. Но что такое эти вещества, от которых зависит работоспособность нашего организма? Энзимы — это биологические молекулы, жизненный цикл которых не определяется рамками от рождения и смерти. Они просто работают в организме до тех пор, пока не растворятся.

Как правило, это происходит под воздействием других ферментов. В процессе биохимической реакции они не становятся частью конечного продукта. Когда реакция завершена, фермент покидает субстрат. После этого вещество готово снова приступить к работе, но уже на другой молекуле. И так продолжается столько, сколько необходимо организму. Уникальность ферментов в том, что каждый из них выполняет только одну, ему отведенную функцию.

Биологическая реакция происходит только тогда, когда фермент находит правильный для него субстрат. Еще одна особенность: они могут работать при низких температурах и умеренном рН, а в роли катализаторов являются более стабильными, чем любые другие химические вещества.

Как правило, эти процессы состоят из определенных этапов, каждый из которых требует работы определенного энзима. Без этого цикл преобразования или ускорения не сможет завершиться. Пожалуй, из всех функций ферментов наиболее известна — роль катализатора. Это значит, что энзимы комбинируют химические реагенты таким образом, чтобы снизить энергетические затраты, необходимые для более быстрого формирования продукта.

Без этих веществ химические реакции протекали бы в сотни раз медленнее. Но на этом способности энзимов не исчерпываются. Все живые организмы содержат энергию, необходимую им для продолжения жизни. Аденозинтрифосфат, или АТФ, это своего рода заряженная батарейка, которая снабжает клетки энергией. Но функционирование АТФ невозможно без ферментов. И главный энзим, производящий АТФ, — синтаза. Для каждой молекулы глюкозы, которая трансформируется в энергию, синтаза производит около молекул АТФ.

Помимо этого, энзимы липаза, амилаза, протеаза активно применяются в медицине. Но некоторые энзимы способны также влиять на кровеносную систему растворяют тромбы , ускорять заживление гнойных ран. И даже в противораковой терапии также прибегают к помощи ферментов. Поскольку энзим способен ускорять реакции во много раз, его активность определяется так называемым числом оборотов.

Этот термин обозначает количество молекул субстрата реагирующего вещества , которую способна трансформировать 1 молекула фермента за 1 минуту. Однако существует ряд факторов, определяющих скорость реакции:. Увеличение концентрации субстрата ведет к ускорению реакции. Чем больше молекул действующего вещества, тем быстрее протекает реакция, поскольку задействовано больше активных центров. Однако ускорения возможно только до тех пор, пока не задействуются все молекулы фермента.

После этого, даже повышение концентрации субстрата не приведет к ускорению реакции. Обычно повышение температуры ведет к ускорению реакций. Это правило работает для большинства ферментативных реакций, но только до тех пор, пока температура не поднимется выше 40 градусов по Цельсию.

После этой отметки скорость реакции, наоборот, начинает резко снижаться. Если температура опустится ниже критической отметки, скорость ферментативных реакций повысится снова. Если температура продолжает расти, ковалентные связи рушатся, а каталитическая активность фермента теряется навсегда. На скорость ферментативных реакций также влияет показатель рН. Для каждого фермента существует свой оптимальный уровень кислотности, при котором реакция проходит наиболее адекватно.

Изменение уровня рН сказывается на активности фермента, а значит, и скорости реакции. Если изменения слишком велики, субстрат теряет способность связываться с активным ядром, а энзим больше не может катализировать реакцию.

С восстановлением необходимого уровня рН, активность фермента также восстанавливается. Ну и, конечно, ускоряют биохимические процессы в организме. За что отвечают пищеварительные — понятно из названия. Но и здесь срабатывает принцип селективности: определенный тип ферментов влияет только на один вид пищи.

Ферменты — это белки, которые в качестве биокатализатора контролируют и ускоряют биохимические реакции в организме, не изменяя себя. Они содержатся во всех клетках организма и необходимы для всех ее функций.

Ферменты: их роль в организме человека.

В природе существуют особые вещества белковой природы, одинаково успешно функционирующие как в живой клетке, так и за её пределами. Это ферменты. С их помощью организм переваривает пищу, выращивает и разрушает клетки, благодаря им эффективно работают все системы нашего организма и, в первую очередь, центральная нервная система. Без ферментов в мире не существовало бы йогурта, кефира, сыра, брынзы, кваса, готовых каш, детского питания. Из чего состоят и как устроены эти биокатализаторы, недавно ставшие верными помощниками биотехнологов, как их отличают друг от друга, как они облегчают нашу жизнь, об этом вы узнаете из этого урока.

Ферменты — это белковые молекулы, которые синтезируются живыми клетками. В каждой клетке насчитывается более сотни различных ферментов. Роль ферментов в клетке колоссальна.

С их помощью химические реакции идут с высокой скоростью, при температуре, подходящей для данного организма. То есть ферменты — это биологические катализаторы , которые облегчают протекание химической реакции и за счет этого увеличивают её скорость. Как катализаторы они не изменяют направление реакции и не расходуются в процессе реакции.

Ферменты - биокатализаторы — вещества, увеличивающие скорость химических реакций. Без ферментов все реакции в живых организмах протекали бы очень медленно и не могли бы поддерживать его жизнеспособность. Наглядный пример работы ферментов — сладковатый вкус во рту, который появляется при пережевывании продуктов, содержащих крахмал например, риса или картофеля.

Появление сладкого вкуса связано с работой фермента амилазы, которая присутствует в слюне и расщепляет крахмал рис. Крахмал является полисахаридом, и сам по себе безвкусный, но продукты расщепления крахмала моносахариды с меньшей молекулярной массой декстрины, мальтоза, глюкоза сладкие на вкус. Все ферменты — глобулярные белки с третичной или четвертичной структурой. Ферменты могут быть простыми, состоящими только из белка, и сложными. Сложные ферменты состоят из белковой и небелковой части белковая часть — апофермент , а добавочная небелковая — кофермент.

В качестве кофермента могут выступать витамины — E, K, B групп рис. Фермент взаимодействует с субстратом, не всей молекулой, а отдельной её частью — т. Фермент взаимодействует с субстратом и образует короткоживущий фермент-субстратный комплекс.

По завершении реакции, фермент-субстратный комплекс распадается на продукты и фермент. Фермент в итоге не изменяется: по окончании реакции он остается таким же, каким был до неё, и может теперь взаимодействовать с новой молекулой субстрата рис. На рисунке 3 представлен механизм работы фермента, в частности, образования пептидной связи между молекулами аминокислот. Две аминокислоты взаимодействуют между собой в активном центре фермента, между ними образуется пептидная связь.

Новое вещество дипептид покидает активный центр фермента, поскольку оно по своей структуре не соответствует этому центру. Особенностью ферментов является то, что они обладают высокой специфичностью, т. В году Э. Фишер предположил, что эта специфичность обусловлена особой формой молекулы фермента, которая точно соответствует форме молекулы субстрата.

Гипотеза гласит: субстрат подходит к ферменту, как ключ подходит к замку. Избирательность действия фермента связана со строением его активного центра рис. Гипотеза взаимодействия фермента и субстрата по принципу ключ-замок Э. В первую очередь, на активность фермента влияет температура.

С повышением температуры скорость химической реакции возрастает. Увеличивается скорость молекул, у них появляется больше шансов столкнуться друг с другом. Следовательно, увеличивается вероятность того, что реакция между ними произойдет. Температура, обеспечивающая наибольшую активность фермента — оптимальная. За пределами оптимальной температуры скорость реакции снижается вследствие денатурации белков.

Когда температура снижается, скорость химической реакции тоже падает. В тот момент, когда температура достигает точки замерзания, фермент инактивируется, но при этом не денатурирует см. В наше время для длительного хранения продуктов широко используют способ быстрого замораживания.

Оно останавливает рост и развитие микроорганизмов, а также инактивирует ферменты, находящиеся внутри микроорганизмов, и предотвращает разложение продуктов питания. Кроме этого, активность ферментов зависит ещё от pH среды кислотности — то есть показателя концентрации ионов водорода.

В большинстве случаев, ферменты работают при нейтральном pH, т. Но существуют ферменты, которые работают либо в кислой и сильнокислой, либо в щелочной и сильнощелочной среде. Например, один из таких ферментов — пепсин, он находится у нас с вами в желудке, работает в сильнокислой среде и расщепляет белки. Поскольку в желудке среда достаточно кислая, 1,5 — 2 pH, то этот фермент работает при сильнокислой среде.

Ферменты подвержены действию активаторов и ингибиторов. Некоторые ионы, например, ионы металлов Mg, Mn, Zn активируют ферменты. Другие же ионы к ним относятся ионы тяжелых металлов, а именно Hg, Pb, Cd , наоборот, подавляют активность ферментов, денатурируют их белки.

В году была предложена систематическая классификация ферментов на 6 групп. Но названия ферментов оказались очень длинными и трудными в произношении, поэтому ферменты принято сейчас именовать с помощью рабочих названий. Например, если вещество — лактоза , то есть молочный сахар, то лактаза — это фермент который его преобразует. Если сахароза обыкновенный сахар , то фермент, который его расщепляет, — сахараза. Соответственно, ферменты, которые расщепляют протеины , носят название протеиназы.

Ферменты применяются практически во всех областях человеческой деятельности, и такое широкое применение, в первую очередь, связано с тем, что они сохраняют свои уникальные свойства вне живых клеток.

Ферменты групп амилаз, протеаз и липаз применяются в медицине. Они расщепляют крахмал, белки и жиры. Все эти ферменты, как правило, входят в состав комбинированных препаратов, таких как фестал и панзинорм, и используются, в первую очередь, для лечения заболеваний желудочно-кишечного тракта рис.

Такие ферменты как амилаза расщепляют крахмал и поэтому широко используются в пищевой промышленности. В пищевой промышленности используется протеиназа, расщепляющая белки, и липазы, расщепляющие жиры. Ферменты амилазы используются в хлебопечении, виноделии и пивоварении см. Ферменты широко используются в косметической промышленности, входят в состав кремов, некоторые ферменты входят в состав стиральных порошков.

Энзимопатология — область энзимологии, которая изучает связь между болезнью и недостаточным синтезом, или отсутствием синтеза какого-либо фермента. Например, причиной наследственного заболевания — фенилкетонурии , которое сопровождается расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение фенилаланина в тирозин.

В результате в организме накапливаются токсические вещества. Новорожденный ребенок выглядит здоровым, а первые симптомы фенилкетонурии проявляются в возрасте от двух до шести месяцев. Это выраженная вялость, отсутствие интереса к окружающему миру, повышенная раздражительность, а также беспокойство и рвота. Во втором полугодии жизни у ребенка выражено отставание в психическом развитии. При своевременной диагностике патологических изменений можно избежать, если с момента рождения до наступления полового созревания ограничить поступление фенилаланина с пищей.

На этом уроке мы с вами выяснили, что ферменты используются в различных областях человеческой деятельности. Они широко используются в пищевой промышленности, в медицине, в косметике и бытовой химии. Например, в стиральные порошки добавляют амилазу , которая расщепляет крахмал, протеазы , расщепляющие белки или белковые загрязнения, и липазы , очищающие ткани от жира и масла.

Как правило, в состав стирального порошка входит комбинация этих ферментов, то есть ферментные препараты усиливают действие друг друга.

Сегодня наиболее изученными ферментами являются протеазы и амилазы. Липазы не всегда стабильны по качеству. Их разработкой занимаются только 10 лет, а амилаза и протеаза существуют на рынке уже более полувека. Сегодня эти две категории ферментов очень хорошо изучены и дают прекрасные результаты, чего пока что нельзя сказать о липазах. Липазы полностью справляются с загрязнениями только после двух-трех стирок, а протеазы и амилазы — за одну. Ферменты были открыты при изучении процессов брожения.

Представления о том, что химические процессы внутри живых организмов протекают под действием каких-то особенных веществ, возникло более лет назад. Пастер ошибочно считал, что ферменты неотделимы от живых клеток. Другой ученый, Эдуард Бухнер, доказал, что в водных экстрактах живых клеток находится набор ферментов, катализирующих превращение сахара в спирт.

Именно его открытие дало начало новой науке — энзимологии. Успехи энзимологии во второй половине XX века привели к тому, что в настоящее время выделено и очищено более ферментов, которые используются в различных отраслях человеческой деятельности. Интернет-портал Biochemistry. Биология Источник. Интернет-портал Chem. Общая биология. Ижевский, О. Корнилова, Т. Лощилина и др. Беляев Д. Биология класс. Базовый уровень. Биология 11 класс.

Захаров, С. Мамонтов, Н.

Ферменты специфичны к субстратам: АТФ-аза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу. Ферментативная активность может регулироваться активаторами повышаться и ингибиторами понижаться.

Наука о ферментах называется энзимологией , а не ферментологией чтобы не смешивать корни слов латинского и греческого языков. Однако механизм этих явлений был неизвестен [3]. Эта точка зрения господствовала в науке в течение длительного времени [4] и шла вразрез с господствовавшей тогда теорией брожения Ю. Либиха , согласно которой все процессы брожения представлялись чисто химическими явлениями каталитического характера будто бы спиртовое брожение происходит вследствие того, что молекулярные колебания разлагающихся частиц дрожжей передаются сахару и сахар начинает распадаться на спирт и углекислый газ; таким образом дрожжи вызывают брожение не при жизни, а только после своей смерти [5].

Различные точки зрения о природе спиртового брожения в теоретическом споре Л. Пастера с одной стороны, и механицистов М. Бертло и Ю. Собственно ферментами от лат. В противовес этому подходу в году В. Кюне предложил термин энзим от греч. Через два года после смерти Л. Пастера в году Э. В году за эту работу он был удостоен Нобелевской премии. Впервые высокоочищенный кристаллический фермент уреаза был выделен в году Дж. В течение последующих 10 лет было выделено ещё несколько ферментов, и белковая природа ферментов была окончательно доказана.

Рибозимом оказался участок молекулы пре-рРНК Tetrahymena, кодируемый интроном внехромосомного гена рДНК; этот участок осуществлял аутосплайсинг, то есть сам вырезал себя при созревании рРНК.

Существуют два основных пути повышения скорости химической реакции. Катализатор обозначим его буквой К на промежуточной стадии взаимодействует с реагентом А с образованием нового комплексного соединения КА , переходному состоянию которого соответствует значительно более низкая энергия активации по сравнению с переходным состоянием реагента А в некатализируемой реакции. Затем комплекс реагент-катализатор КА распадается на продукт П и свободный катализатор, который может опять соединиться с другой молекулой А и повторить весь цикл.

Именно таким образом катализаторы снижают энергию активации химической реакции, в их присутствии гораздо более значительная доля молекул данной популяции вступает в реакцию в единицу времени. Ферменты, так же как и другие катализаторы, соединяются со своими субстратами в ходе каталитического цикла [6]. Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ в другие. Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах.

К году было описано более разных ферментов [7] [8]. Они играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма. Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону. Таким образом, у различных ферментов, выполняющих одну функцию, будет одинаковое название или один и тот же фермент имеет два и более названий.

Такие ферменты различают по другим свойствам, например, по оптимальному pH щелочная фосфатаза или локализации в клетке мембранная АТФаза. Многие ферменты имеют исторически сложившиеся тривиальные названия, не связанные с названиями их субстратов, например пепсин и трипсин. Из-за этих и других затруднений, а также вследствие всевозрастающего числа вновь открываемых ферментов было принято международное соглашение о создании систематической номенклатуры и классификации ферментов [9].

Классификация была предложена Международным союзом биохимии и молекулярной биологии International Union of Biochemistry and Molecular Biology. Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками.

Например, пепсин имеет название ЕС 3. Первое число грубо описывает механизм реакции, катализируемой ферментом:. Простейшим описанием кинетики односубстратных ферментативных реакций является уравнение Михаэлиса — Ментен см. Волькенштейн , Р. Догонадзе, З. Урушадзе и др. Предположим, концентрация фермента постоянна и необходимо измерить влияние изменения концентрации субстрата на начальную скорость ферментативной реакции.

При очень низких концентрациях субстрата скорость реакции очень мала, но стабильно возрастает по мере постепенного повышения концентрации субстрата. Однако приращения скорости каталитической реакции становятся с каждым возрастанием концентрации субстрата всё меньше и меньше.

Наконец, наступает момент, когда любое увеличение концентрации субстрата вызывает лишь бесконечно малое ускорение реакции: как бы ни увеличивалась концентрация субстрата, скорость реакции может лишь приближаться к плато, но никогда его не достигнет.

На этом плато, называемом максимальной скоростью реакции V max фермент насыщен субстратом и не может функционировать быстрее. Данный эффект насыщения свойственен почти всем ферментам. Величину V max можно определить из представленного графика путём аппроксимирования. Точное определение в данном случае невозможно, так как по мере повышения концентрации субстрата начальная скорость реакции лишь приближается к V max , но никогда её не достигает.

Активность ферментов определяется их трёх- и четырёхмерной структурой [17]. Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот , которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула белковая глобула обладает уникальными свойствами.

Несколько белковых цепей могут объединяться в белковый комплекс. Третичная и четвертичная структуры белков разрушается при нагревании, изменении pH или воздействии некоторых химических веществ.

На сегодняшний момент описано несколько механизмов действия ферментов. В простой ферментативной реакции может участвовать только одна молекула субстрата С, связывающаяся с ферментом Ф с образованием продукта П:. Однако на самом деле во многих ферментативных реакциях метаболизма принимают участие и связываются с ферментом две, а иногда даже три молекулы разных субстратов. Такие реакции обычно включают перенос атома или функциональной группы от одного субстрата к другому. Такие реакции могут протекать по двум различным механизмам.

В реакциях первого типа, называемых реакциями единичного замещения , два субстрата С 1 и С 2 связываются с ферментом Ф либо специфическим, либо случайным образом с образованием комплекса Ф С 1 С 2 , который затем распадается на продукты П 1 и П 2 :.

В этих реакциях с каталитическим центром фермента в данный момент времени связан только один из двух субстратов. Присоединение первого субстрата сопровождается переносом его функциональной группы на молекулу фермента. Только после удаления продукта, образовавшегося из первого субстрата, второй субстрат может связаться с ферментом и принять функциональную группу [18].

Изучение механизма химической реакции , катализируемой ферментом наряду с определением промежуточных и конечных продуктов на разных стадиях реакции подразумевает точное знание геометрии третичной структуры фермента, природы функциональных групп его молекулы , обеспечивающих специфичность действия и высокую каталитическую активность на данный субстрат , а также химической природы участка участков молекулы фермента, который обеспечивает высокую скорость каталитической реакции.

Обычно молекулы субстрата, участвующие в ферментативных реакциях, по сравнению с молекулами ферментов имеют относительно небольшие размеры. В активном центре условно выделяют [19] :. Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты.

Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторов или ионов металлов. В конце реакции её продукт или продукты отделяются от фермента. В результате фермент снижает энергию активации реакции.

Это происходит потому, что в присутствии фермента реакция идёт по другому пути фактически происходит другая реакция , например:.

Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции для протекания которых требуется энергия. Поэтому ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделением большего количества энергии. Например, реакции синтеза биополимеров часто сопрягаются с реакцией гидролиза АТФ. Для активных центров некоторых ферментов характерно явление кооперативности. Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам субстратная специфичность.

Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер , региоселективности образуют или разрывают химическую связь только в одном из возможных положений субстрата и хемоселективности катализируют только одну химическую реакцию из нескольких возможных для данных условий.

Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидаза трипсин разрывает пептидную связь только после аргинина или лизина , если за ними не следует пролин, а пепсин гораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.

Эмиль Фишер предположил, что специфичность ферментов определяется точным соответствием формы фермента и субстрата [20]. Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса. Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике. Активный центр фермента может изменить конформацию после связывания субстрата.

Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. Многие ферменты после синтеза белковой цепи претерпевают модификации, без которых фермент не проявляет свою активность в полной мере.

Такие модификации называются посттрансляционными модификациями процессингом. Например, присоединение остатка фосфорной кислоты называется фосфорилированием, оно катализируется ферментом киназой.

Многие ферменты эукариот гликозилированы, то есть модифицированы олигомерами углеводной природы. Например, химотрипсин протеаза , участвующая в пищеварении , получается при выщеплении полипептидного участка из химотрипсиногена. Химотрипсиноген является неактивным предшественником химотрипсина и синтезируется в поджелудочной железе. Неактивная форма транспортируется в желудок , где превращается в химотрипсин. Такой механизм необходим для того, чтобы избежать расщепления поджелудочной железы и других тканей до поступления фермента в желудок.

Некоторые ферменты выполняют каталитическую функцию сами по себе, безо всяких дополнительных компонентов. Однако есть ферменты, которым для осуществления катализа необходимы компоненты небелковой природы.

ВИДЕО ПО ТЕМЕ: Биология 4 - Ферменты Биология 4 -Ферменттер

Комментариев: 1

  1. volk0509:

    Зачем на Руси ели землю?